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Effective way for determination of multicanonical weights

Ulrich H. E. Hansmann*
Department of Theoretical Studies, Institute for Molecular Science, Okazaki, Aichi 444, Japan

~Received 5 May 1997!

The problem of calculating weight factors for simulations in a generalized ensemble is discussed. An
approach for a fast and simple estimation of such weights is proposed and tested in the case of the simple
peptide Met-enkephalin.@S1063-651X~97!12211-5#

PACS number~s!: 02.70.Lq, 02.50.Ng, 02.60.Pn
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In the last few years generalized ensemble algorith
have become popular as a way to overcome the expo
tially slow convergence in numerical simulations of syste
with a rough energy landscape. Prominent examples of s
an approach are the multicanonical algorithm@1,2#, 1/k sam-
pling @3#, and simulated tempering@4,5#. These algorithms
explore larger parts of the phase space than canonical
lecular dynamics or Monte Carlo, which at low temperatu
are easily trapped in one of the huge number of local m
mas. This is because in the canonical ensemble the prob
ity to cross an energy barrier of heightsDE is proportional to
e2DE/T at temperatureT. On the other hand, in generalize
ensembles the probability to cross an energy barrier is in
pendent of temperature. For instance, in the multicanon
algorithm @1,2#, configurations with energyE are updated
with a weight:

wmu~E!}n21~E!5e2S~E!, ~1!

wheren(E) is the density of states andS(E)5 ln n(E) is the
microcanonical entropy. The so-defined weights lead t
uniform distribution in energy,

Pmu~E!`n~E!wmu~E!5const. ~2!

Hence a simulation with this weight factor generates a o
dimensional random walk in the energy space, allowing its
to escape from any energy barrier. Since large parts of
phase space are explored, the expectation value of any p
cal quantityO can be calculated accurately for a wide ran
of temperatures by the reweighting techniques@6#.

Despite many successful applications, for instance to s
glasses @7# and the protein-folding problem @8,9#,
generalized-ensemble methods are not without problems
contrast to the canonical ensemble, the weight factors are
a priori known. For example, for the multicanonical alg
rithm knowledge of the exact weight@see Eq.~1!# would be
equivalent to obtaining the density of statesn(E), i.e., solv-
ing the system. Hence for a numerical simulation one ne
estimators of the weights. Their determination can be n
trivial and tedious. In fact, the problem of finding good es
mators of the weights is very often limiting the use of ge
eralized ensemble techniques. It is therefore importan
develop methods which allow for their fast and easy cal
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lation. Our aim here is to present such an approach. We
restrict ourselves to the problem of calculating multicano
cal weights, since it was shown in Ref.@10# that knowledge
of weights for one of the generalized ensembles algorith
implies a knowledge of the weights for the other algorithm

Following the pioneering work by Berg@2#, estimators of
the multicanonical weights are usually calculated by an ite
tive procedure. The improved estimator of the multicano
cal weight for thei th iteration is calculated from the histo
gram of energy distributionPmu

( i 21)(E) and the weightwmu
( i 21)

of the previous simulation as follows:

wmu
~ i ! ~E!5

wmu
~ i 21!~E!

Pmu
~ i 21!~E!

. ~3!

The iteration starts with a canonical simulation at sufficien
high temperatureT0 : wmu

(0)(E)5wB(T0 ,E)5e2E/kBT0, with
kB the Boltzmann constant. For details, see Ref.@2#. While
the method is quite general, it has the disadvantage th
requires iterations of short simulations, the number of wh
is not knowna priori. For the calculations in Ref.@8#, about
40% total CPU time was spent for this task. Several attem
were made to accelerate the above iterative procedure~see
for instance Refs.@11–13#!, but there is still need for furthe
improvement.

Here we propose another approach: calculating the m
canonical weights from simulated annealing@14# runs. This
can be done in the following way. First, a simulated anne
ing run with small statistic is performed. While decreasi
the temperature, the average potential energy^E& as a func-
tion of the inverse temperatureb51/kBT is calculated and
stored for further analyses. In general, simulated annea
cannot be used for the calculation of thermodynamic qua
ties, since only for the case of a logarithmic annealing
temperature~which is seldom feasible! is it guaranteed tha
the system will stay in thermodynamic equilibrium@15#.
Hence, our estimates of^E& are hampered by a bias, but w
expect this bias to be small enough that it can be negle
for our purpose. The stored values of our estimators for^E&
should be a monotonic decreasing function of the inve
temperatureb. Due to insufficient statistics, this may no
always be the case, and it may be necessary to app
smoothing algorithm to the stored energy values until a ta
of monotonically decreasinĝE&(b) is obtained. From this
final table it is easy to determineb5b(^E&) as a function of
6200 © 1997 The American Physical Society
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56 6201BRIEF REPORTS
potential energy for an energy range@Emin ,Emax#. Here,Emin
(Emax) is the minimal~maximal! value of^E&(b). Using the
thermodynamic relation

b~E!5
dS~E!

dE
, ~4!

the inverse functionb(E)[b(^E&) can be used now to cal
culate estimators for the microcanonical entropyS(E) by
evaluating

S~E!55
S~Emax!1b~Emax!~E2Emax!, E.Emax

E
Emin

E

dE b~Ẽ!, Emax>E>Emin

S~Emin!2b~Emin!~Emin2E!, E,Emin .

~5!

Here, a linear extrapolation of the microcanonical entro
S(E) is chosen outside of the energy interval@Emin ,Emax#,
for which data from the simulated annealing run are av
able. Knowledge ofS(E) is equivalent to that of the multi
canonical weights since the latter were defined in Eq.~1! as
wmu(E)5e2S(E). With an estimate for the weights now
given, one can perform a multicanonical simulation. It m
sometimes be the case that the resulting distribution is
flat, and further improvements are necessary using Be
iterative procedure@2#, but we expect a fast convergenc
since the simulated annealing run has already collected
formation over a large temperature~and therefore energy!
range. It also may sometimes be preferable to perform a
of simulated annealing runs, and average over these run
obtain an improved estimate of the energies^E&(b).

We remark that the above-used relationb(E)5b(^E&) is
not exact on finite systems. This implies that our method
not suitable for the case of first-order phase transitions. T
is not a drawback as long as one is mainly interested
systems with rough energy landscapes, the kind of syst
on which most generalized ensemble simulations foc
However, in the case that a first-order phase transition
suspected, another method should be employed.

The performance of our approach was tested by taking
energy function for the protein-folding problem. Here, Me
enkephalin, one of the simplest peptides, has become
often used model to examine new algorithms in the prot
folding problem. Met-enkephalin has the amino acid
quence Tyr-Gly-Gly-Phe-Met. The potential energy functi
Etot that we used is given by the sum of electrostatic te
EC , the Lennard-Jones termELJ , and hydrogen-bond term
Ehb for all pairs of atoms in the peptide together with t
torsion termEtors for all torsion angles. The parameters f
the energy function were adopted fromECEPP/2@16#. Fixing
the peptide bond anglesv to 180° leaves us with 19 torsio
angles as degree of freedom. The computer codeSMC @17#
was used. One Monte Carlo~MC! sweep updates every to
sion angle of the peptide once.

To calculate the multicanonical parameters for M
enkephalin, we performed a simulated annealing run
20 000 MC sweeps following 100 MC sweeps at our st
temperatureTST51000 K for thermalization. We remark tha
a minimum of 40 000 MC sweeps~and often more! were
needed to determine multicanonical parameters for this p
y
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tide by the commonly used iterative procedure@8#. The tem-
perature was lowered exponentially according to

T5TSTg
i 21 ~6!

for the i th, sweep and

g5
TFI

1/19 999

TST
, ~7!

where we chose a final temperatureTFI550 K. After each
sweep we store the current inverse temperatureb and Ē
5 1

19 ( i
19Ei , which is the average of the potential energyE

taken over all 19 updates of angles within one sweep.
course, Ē is a poor estimator of the thermal avera
^E&(b) used in Eq.~5!, and strongly fluctuating as a functio

FIG. 1. Estimators of the average energy^E& ~in kcal/mol! as a
function of temperatureT as obtained by a simulated annealing r
of 20 000 sweeps with the annealing schedule described in the
Both the raw data and our final~smooth! estimators shown.

FIG. 2. Inverse temperatureb ~in 1/K! and our estimator for the
microcanonical entropyS(E) ~in arbitary units! as a function of
energyE. The dotted line is our extrapolation ofS(E) outside of
the range of energies for which we have data points from the si
lated annealing run.
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6202 56BRIEF REPORTS
of b. To obtain a better estimator, we apply the followin
smoothing algorithm to the stored energies. We replace e
value of Ē(b i) by the average over its neighbors:Ēnew(b i)
5@Ē(b i 111Ē(b i)1Ē(b i 21)#/3, where b i 11 , b i , and
b i 21 follow on each other in the temperature anneal
schedule. Here we require that the difference in tempera
be small in simulated annealing between subsequent ste
the annealing procedure, and therefore that the expecta
values of thermodynamic quantities should also change o
slightly between subsequent temperatures. We repeat
smoothing procedure until we obtain new values ofĒ(b),
which are a monotonous decreasing function of the inve
temperatureb, and set̂ E&(b)[Ē(b). In Fig. 1 we display
both our original data and the new, smooth estimator of^E&
as a function of temperature. Since the function^E&(b) is
now given explicitly by a table, it can be easily inverte
Integratingb(E) allows us to calculate estimators for th
microcanonical entropyS(E) and the multicanonical weight
wmu(E)5e2S(E) by Eq. ~5!. In Fig. 2 we show bothb(E)
and our estimators forS(E) as calculated by Eq.~5!.

Using the so-obtained weights, we performed a multi
nonical simulation of 100 000 sweeps for Met-enkephalin
Fig. 3 we show the probability distribution of energy as o
tained with these weights. The distribution is essentially
over the whole energy range which covers both high- a
low-temperature states. The entries differ only by factors

FIG. 3. Probability distribution of energy as obtained by a m
ticanonical simulation of 100 000 sweeps with weights calcula
by our approach. For comparison we also show the distribu
obtained with the weights of Ref.@18#, which were calculated by
the older iterative procedure.
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3. For comparison we also show the distribution we obtain
with the weights of Ref.@18#, which were calculated by the
iterative procedure described in Ref.@8#. The differences be-
tween the two distributions are small, and when we calcu
thermodynamic quantities from the two distributions th
differences are within the errorbars. This can be seen in
4, where the average energy^E& is shown as a function o
temperatureT. Hence we conclude that our approach is w
suited to calculate estimators for the multicanonical weigh

Let us summarize our results. We have proposed an
proach to calculate multicanonical parameters for syste
with conflicting constraints. For the simple peptide Me
enkephalin, we were able to obtain these weights from
single simulated annealing run of 20 000 sweeps, wh
with the commonly used iterative procedure of Berg@2#, we
needed at least twice as many sweeps and often more.
shows that our ansatz indeed allows a faster and sim
calculation of the weights for generalized ensemble simu
tions. Since the need to find estimators for the weights is
main drawback of multicanonical and other generalized
semble algorithms, we hope that our ansatz will help to ap
these simulation techniques to a wider range of problem

These simulations were performed on the computers
the Computer Center at the Institute for Molecular Scien
~IMS!, Okazaki, Japan.
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FIG. 4. Average energŷE& as calculated from multicanonica
simulation of 100 000 sweeps with weights calculated by our
proach. For comparison we also show the results from a mult
nonical simulation with same statistic, but where the weights
Ref. @18# ~calculated by the older iterative procedure! were used.
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