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Effective way for determination of multicanonical weights
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The problem of calculating weight factors for simulations in a generalized ensemble is discussed. An
approach for a fast and simple estimation of such weights is proposed and tested in the case of the simple
peptide Met-enkephalinS1063-651X%97)12211-5
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In the last few years generalized ensemble algorithméation. Our aim here is to present such an approach. We will
have become popular as a way to overcome the exponenmestrict ourselves to the problem of calculating multicanoni-
tially slow convergence in numerical simulations of systemscal weights, since it was shown in R¢L0] that knowledge
with a rough energy landscape. Prominent examples of suabf weights for one of the generalized ensembles algorithms
an approach are the multicanonical algoritiiy2], 1k sam-  implies a knowledge of the weights for the other algorithms.
pling [3], and simulated temperingt,5]. These algorithms Following the pioneering work by Bel@], estimators of
explore larger parts of the phase space than canonical mthhe multicanonical weights are usually calculated by an itera-
lecular dynamics or Monte Carlo, which at low temperaturedive procedure. The improved estimator of the multicanoni-
are easily trapped in one of the huge number of local minical weight for theith iteration is calculated from the histo-
mas. This is because in the canonical ensemble the probabiram of energy distributioP{; *(E) and the weightv{ ¥
ity to cross an energy barrier of heigh¥& is proportional to  of the previous simulation as follows:

e AF'T at temperaturd. On the other hand, in generalized
ensembles the probability to cross an energy barrier is inde-

pendent of temperature. For instance, in the multicanonical () (E)= Wiy, Y(E) 3
algorithm [1,2], configurations with energ¥ are updated Win(E)= PU-U(E)”
with a weight:

Wny(E)cn™Y(E)=e 5B, (1)  The iteration starts with a canonical simulation at sufficiently

high temperaturély: w{9(E)=wg(To,E)=e"FsTo, with
wheren(E) is the density of states ar®{E)=In n(E) is the kg the Boltzmann constant. For details, see R2f. While
microcanonical entropy. The so-defined weights lead to ahe method is quite general, it has the disadvantage that it

uniform distribution in energy, requires iterations of short simulations, the number of which
is not knowna priori. For the calculations in Ref8], about
Pmu(E)en(E)wy,( E)=const. (2 40% total CPU time was spent for this task. Several attempts

were made to accelerate the above iterative procetse
Hence a simulation with this weight factor generates a onefor instance Refd.11-13), but there is still need for further
dimensional random walk in the energy space, allowing itselimprovement.
to escape from any energy barrier. Since large parts of the Here we propose another approach: calculating the multi-
phase space are explored, the expectation value of any physianonical weights from simulated annealirigl] runs. This
cal quantityO can be calculated accurately for a wide rangecan be done in the following way. First, a simulated anneal-
of temperatures by the reweighting techniq{@k ing run with small statistic is performed. While decreasing
Despite many successful applications, for instance to spithe temperature, the average potential enéigjyas a func-
glasses [7] and the protein-folding problem(8,9], tion of the inverse temperatug@=1/kgT is calculated and
generalized-ensemble methods are not without problems. Istored for further analyses. In general, simulated annealing
contrast to the canonical ensemble, the weight factors are naannot be used for the calculation of thermodynamic quanti-
a priori known. For example, for the multicanonical algo- ties, since only for the case of a logarithmic annealing of
rithm knowledge of the exact weightee Eq.(1)] would be  temperaturgwhich is seldom feasibjeis it guaranteed that
equivalent to obtaining the density of stat§€), i.e., solv- the system will stay in thermodynamic equilibriupd5].
ing the system. Hence for a numerical simulation one needslence, our estimates ¢E) are hampered by a bias, but we
estimators of the weights. Their determination can be nonexpect this bias to be small enough that it can be neglected
trivial and tedious. In fact, the problem of finding good esti- for our purpose. The stored values of our estimators Er
mators of the weights is very often limiting the use of gen-should be a monotonic decreasing function of the inverse
eralized ensemble techniques. It is therefore important teemperatureB. Due to insufficient statistics, this may not
develop methods which allow for their fast and easy calcualways be the case, and it may be necessary to apply a
smoothing algorithm to the stored energy values until a table
of monotonically decreasin¢E)(B) is obtained. From this
*Electronic address: hansmann@ims.ac.jp final table it is easy to determing= B({E)) as a function of
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potential energy for an energy ran€in,Emad- Here,Emin % ' ' AW DATA o
(Emay is the minimal(maxima) value of(E)(8). Using the o5 | SMOOTH DATA -+ |

thermodynamic relation
20

dS(E)
BE)=—gg 4 s
10
the inverse functioB(E)= B((E)) can be used now to cal-
culate estimators for the microcanonical entrdpyE) by
evaluating ol

S(Ermad + B(Emad (E—Emady  E>Ennax s}

E —_ a0 L o
S(B)= fE . dE B(E),  EmaE=Enmin ) 0 200 200 600 500 1000
min TIKI

S(Emin) - E(Emin)(Emin_ E), E< Emin .

FIG. 1. Estimators of the average enek@) (in kcal/mo) as a
Here, a linear extrapolation of the microcanonical entropyfunction of temperaturd as obtained by a simulated annealing run
S(E) is chosen outside of the energy interV@ i, ,Emaxl, of 20 000 sweeps with the annealing schedule described in the text.
for which data from the simulated annealing run are avail-Both the raw data and our finémooth estimators shown.
able. Knowledge o5(E) is equivalent to that of the multi-
canonical weights since the latter were defined in @yjas  tide by the commonly used iterative proced{8¢ The tem-
Wn(E)=e"5B)_ With an estimate for the weights now Perature was lowered exponentially according to
given, one can perform a multicanonical simulation. It may _
sometimes be the case that the resulting distribution is not T=Tgry ! (6)
flat, and further improvements are necessary using Berg's
iterative procedur¢2], but we expect a fast convergence for the jth, sweep and
since the simulated annealing run has already collected in-

<E> [keal/mol]

formation over a large temperatutand therefore energy T 119999
range. It also may sometimes be preferable to perform a set y= F'_, 7
of simulated annealing runs, and average over these runs to Tst

obtain an improved estimate of the energ{&S(3).
We remark that the above-used relatio(E) = B((E)) is  where we chose a final temperatufg =50 K. After each

not exact on finite systems. This implies that our method issweep we store the current inverse temperajrand E

not suitable for the case of first-order phase transitions. This- %E%QEi, which is the average of the potential eneigy

is not a drawback as long as one is mainly interested iRaken over all 19 updates of angles within one sweep. Of

systems with rough energy landscapes, the kind of systems, ;rse E is a poor estimator of the thermal average

on which most generalized ensemble simulations focus;g used in Ea(5). and stronalv fluctuating as a function
However, in the case that a first-order phase transition ié B a0d), av g

suspected, another method should be employed.

The performance of our approach was tested by taking an [ ' ' ' ' BET'AﬁE) .
energy function for the protein-folding problem. Here, Met- 4 | SE - |
enkephalin, one of the simplest peptides, has become an WM
often used model to examine new algorithms in the protein 5o o
folding problem. Met-enkephalin has the amino acid se- A
quence Tyr-Gly-Gly-Phe-Met. The potential energy function “°[

Eio that we used is given by the sum of electrostatic term |

Ec, the Lennard-Jones teri, ;, and hydrogen-bond term

Eyp, for all pairs of atoms in the peptide together with the 20} g” .
torsion termE,y, for all torsion angles. The parameters for

the energy function were adopted fraraepPpP/2[16]. Fixing 10 ‘ ]
the peptide bond anglas to 180° leaves us with 19 torsion 000 s000 5 6600

angles as degree of freedom. The computer cavde [17] i

was used. One Monte CarlMC) sweep updates every tor- ;L. . . . .

sion angle of the peptide once. 10 5 E[kcalfmo” 10 18 20

To calculate the multicanonical parameters for Met-
enkephalin, we performed a simulated annealing run of FiG. 2. Inverse temperatuge (in 1/K) and our estimator for the
20 000 MC sweeps following 100 MC sweeps at our starimicrocanonical entropys(E) (in arbitary unit3 as a function of
temperaturél s7=1000 K for thermalization. We remark that energyE. The dotted line is our extrapolation &{E) outside of
a minimum of 40 000 MC sweep&nd often morewere  the range of energies for which we have data points from the simu-
needed to determine multicanonical parameters for this pepated annealing run.
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FIG. 3. Probability distribution of energy as obtained by a mul-  FIG. 4. Average energyE) as calculated from multicanonical
ticanonical simulation of 100 000 sweeps with weights calculatedsimulation of 100 000 sweeps with weights calculated by our ap-
by our approach. For comparison we also show the distributiorproach. For comparison we also show the results from a multica-
obtained with the weights of Ref18], which were calculated by nonical simulation with same statistic, but where the weights of
the older iterative procedure. Ref.[18] (calculated by the older iterative procedureere used.

of B. To obtain a better estimator, we apply the following . o )
smoothing algorithm to the stored energies. We replace each FOr comparison we also shovy the distribution we obtained
value of E(B,) by the average over its neighboB™(3;) ywth 'Fhe weights of Ref[lﬁ], whlch were calgulated by the
:[E_(Bi+1+E(,8i)+E_(ﬁifl)]/31 where B..,, B, and iterative procedl.Jre'desfcrlbed in REB). The differences be-
Bi_, follow on each other in the temperature annealingtween the two distributions are small, and when we calculate

schedule. Here we require that the difference in temperaturfi€'modynamic quantities from the two distributions their
be small in simulated annealing between subsequent steps gffferences are within the errorbars. This can be seen in Fig.
the annealing procedure, and therefore that the expectatich Where the average energl) is shown as a function of
values of thermodynamic quantities should also change onl{emperaturel. Hence we conclude that our approach is well
slightly between subsequent temperatures. We repeat thiglited to calculate estimators for the multicanonical weights.

smoothing procedure until we obtain new valuesEgfs), Let us summarize our.result; We have proposed an ap-

which are a monotonous decreasing function of the invers@roach to calculate multicanonical parameters for systems
_=r : ; with conflicting constraints. For the simple peptide Met-

temperatured, and se{E)(B)=E(B). In Fig. 1 we display : . -

both our original dataKarzd the new, smooth estimatafof enkephalin, we were able to obtain these weights from a

: . . . ingle simulated annealing run of 20 000 sweeps, where
as a function of temperature. Since the functi@)(g) is sing . : ' ’
now given explicitly by a table, it can be easily inverted. with the commonly used iterative procedure of BEZy we

Integrating B(E) allows us to calculate estimators for the needed at least twice as many sweeps and often more. This

o o0 41 e ot v, T 1o 3 STt st sl 3 e e
w(E)=e"5® by Eq. (5). In Fig. 2 we show bothB(E) 9 9

and our estimators fo(E) as calculated by Ed(5). tions. Since the need to find estimators for the weights is the

Using the so-obtained weights, we performed a multica_main drawback of multicanonical and other generalized en-
nonical simulation of 100 000 sweeps for Met-enkephalin. | semble algorithms, we hope that our ansatz will help to apply

Fig. 3 we show the probability distribution of energy as obr_]these simulation techniques to a wider range of problems.

tained with these weights. The distribution is essentially flat These simulations were performed on the computers at
over the whole energy range which covers both high- andhe Computer Center at the Institute for Molecular Science
low-temperature states. The entries differ only by factors ofIMS), Okazaki, Japan.
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